
CS193p

Spring 2016

Stanford CS193p
Developing Applications for iOS 

Spring 2016



CS193p

Spring 2016

Today
Interface Builder Demo

Viewing and editing your custom UIViews in your storyboard (FaceView)

The FaceViewController MVC’s Model
It’s a facial expression

Gestures
Getting touch input from users

Demo: Modifying the facial expression
Panning, pinching, tapping, rotating

Multiple MVCs
Tab Bar, Navigation and Split View Controller



CS193p

Spring 2016

Demo
Interface Builder Demo

Viewing and editing your custom UIViews in your storyboard (FaceView)

The FaceViewController MVC’s Model
It’s a facial expression



CS193p

Spring 2016

Gestures
We’ve seen how to draw in a UIView, how do we get touches?

We can get notified of the raw touch events (touch down, moved, up, etc.)
Or we can react to certain, predefined “gestures.” The latter is the way to go!

Gestures are recognized by instances of UIGestureRecognizer
The base class is “abstract.” We only actually use concrete subclasses to recognize.

There are two sides to using a gesture recognizer
1. Adding a gesture recognizer to a UIView (asking the UIView to “recognize” that gesture)
2. Providing a method to “handle” that gesture (not necessarily handled by the UIView)

Usually the first is done by a Controller
Though occasionally a UIView will do this itself if the gesture is integral to its existence

The second is provided either by the UIView or a Controller
Depending on the situation. We’ll see an example of both in our demo.



CS193p

Spring 2016

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

@IBOutlet weak var pannableView: UIView { 
    didSet { 
        let recognizer = UIPanGestureRecognizer( 
            target: self, action: #selector(ViewController.pan(_:)) 
        ) 
        pannableView.addGestureRecognizer(recognizer) 
    } 
}

Gestures
We can configure it to do so in the property observer for the outlet to said UIView …



CS193p

Spring 2016

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

@IBOutlet weak var pannableView: UIView { 
    didSet { 
        let recognizer = UIPanGestureRecognizer( 
            target: self, action: #selector(ViewController.pan(_:)) 
        ) 
        pannableView.addGestureRecognizer(recognizer) 
    } 
}

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime.

We can configure it to do so in the property observer for the outlet to said UIView …



CS193p

Spring 2016

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

@IBOutlet weak var pannableView: UIView { 
    didSet { 
        let recognizer = UIPanGestureRecognizer( 
            target: self, action: #selector(ViewController.pan(_:)) 
        ) 
        pannableView.addGestureRecognizer(recognizer) 
    } 
}

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime.
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)

We can configure it to do so in the property observer for the outlet to said UIView …



CS193p

Spring 2016

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

@IBOutlet weak var pannableView: UIView { 
    didSet { 
        let recognizer = UIPanGestureRecognizer( 
            target: self, action: #selector(ViewController.pan(_:)) 
        ) 
        pannableView.addGestureRecognizer(recognizer) 
    } 
}

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime.
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (in this case, the Controller itself)

We can configure it to do so in the property observer for the outlet to said UIView …



CS193p

Spring 2016

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

@IBOutlet weak var pannableView: UIView { 
    didSet { 
        let recognizer = UIPanGestureRecognizer( 
            target: self, action: #selector(ViewController.pan(_:)) 
        ) 
        pannableView.addGestureRecognizer(recognizer) 
    } 
}

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime.
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (in this case, the Controller itself)
The action is the method invoked on recognition ((_:) means the method has an argument)

We can configure it to do so in the property observer for the outlet to said UIView …



CS193p

Spring 2016

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

@IBOutlet weak var pannableView: UIView { 
    didSet { 
        let recognizer = UIPanGestureRecognizer( 
            target: self, action: #selector(ViewController.pan(_:)) 
        ) 
        pannableView.addGestureRecognizer(recognizer) 
    } 
}

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime.
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (in this case, the Controller itself)
The action is the method invoked on recognition ((_:) means the method has an argument)
Here we ask the UIView to actually start trying to recognize this gesture in its bounds

We can configure it to do so in the property observer for the outlet to said UIView …



CS193p

Spring 2016

Adding a gesture recognizer to a UIView
Imagine we wanted a UIView in our Controller’s View to recognize a “pan” gesture.

@IBOutlet weak var pannableView: UIView { 
    didSet { 
        let recognizer = UIPanGestureRecognizer( 
            target: self, action: #selector(ViewController.pan(_:)) 
        ) 
        pannableView.addGestureRecognizer(recognizer) 
    } 
}

Gestures

The property observer’s didSet code gets called when iOS hooks up this outlet at runtime.
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (in this case, the Controller itself)
The action is the method invoked on recognition ((_:) means the method has an argument)
Here we ask the UIView to actually start trying to recognize this gesture in its bounds
Let’s talk about how we implement the handler …

@IBOutlet weak var pannableView: UIView { 
    didSet { 
        let recognizer = UIPanGestureRecognizer( 
            target: self, action: #selector(ViewController.pan(_:)) 
        ) 
        pannableView.addGestureRecognizer(recognizer) 
    } 
}

We can configure it to do so in the property observer for the outlet to said UIView …



CS193p

Spring 2016

Gestures
A handler for a gesture needs gesture-specific information

So each concrete subclass provides special methods for handling that type of gesture

For example, UIPanGestureRecognizer provides 3 methods
func translationInView(UIView) -> CGPoint // cumulative since start of recognition
func velocityInView(UIView) -> CGPoint // how fast the finger is moving (points/s)
func setTranslation(CGPoint, inView: UIView)
This last one is interesting because it allows you to reset the translation so far
By resetting the translation to zero all the time, you end up getting “incremental” translation

The abstract superclass also provides state information
var state: UIGestureRecognizerState { get }
This sits around in .Possible until recognition starts
For a discrete gesture (e.g. a Swipe), it changes to .Recognized (Tap is not a normal discrete)
For a continues gesture (e.g. a Pan), it moves from .Began thru repeated .Changed to .Ended
It can go to .Failed or .Cancelled too, so watch out for those!



CS193p

Spring 2016

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {  
    switch gesture.state {  
        case .Changed: fallthrough  
        case .Ended:  
            let translation = gesture.translationInView(pannableView)  
            // update anything that depends on the pan gesture using translation.x and .y 
            gesture.setTranslation(CGPointZero, inView: pannableView)  
        default: break  
    }  
}

Gestures

Remember that the action was pan(_:) (if no _:, then no gesture argument)



CS193p

Spring 2016

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {  
    switch gesture.state {  
        case .Changed: fallthrough  
        case .Ended:  
            let translation = gesture.translationInView(pannableView)  
            // update anything that depends on the pan gesture using translation.x and .y 
            gesture.setTranslation(CGPointZero, inView: pannableView)  
        default: break  
    }  
}

Gestures

Remember that the action was pan(_:) (if no _:, then no gesture argument)
We are only going to do anything when the finger moves or lifts up off the device’s surface



CS193p

Spring 2016

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {  
    switch gesture.state {  
        case .Changed: fallthrough  
        case .Ended:  
            let translation = gesture.translationInView(pannableView)  
            // update anything that depends on the pan gesture using translation.x and .y 
            gesture.setTranslation(CGPointZero, inView: pannableView)  
        default: break  
    }  
}

Gestures

Remember that the action was pan(_:) (if no _:, then no gesture argument)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough is “execute the code for the next case down” (case .Changed,.Ended: ok too)



CS193p

Spring 2016

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {  
    switch gesture.state {  
        case .Changed: fallthrough  
        case .Ended:  
            let translation = gesture.translationInView(pannableView)  
            // update anything that depends on the pan gesture using translation.x and .y 
            gesture.setTranslation(CGPointZero, inView: pannableView)  
        default: break  
    }  
}

Gestures

Remember that the action was pan(_:) (if no _:, then no gesture argument)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough is “execute the code for the next case down” (case .Changed,.Ended: ok too)
Here we get the location of the pan in the pannableView’s coordinate system



CS193p

Spring 2016

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {  
    switch gesture.state {  
        case .Changed: fallthrough  
        case .Ended:  
            let translation = gesture.translationInView(pannableView)  
            // update anything that depends on the pan gesture using translation.x and .y 
            gesture.setTranslation(CGPointZero, inView: pannableView)  
        default: break  
    }  
}

Gestures

Remember that the action was pan(_:) (if no _:, then no gesture argument)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough is “execute the code for the next case down” (case .Changed,.Ended: ok too)
Here we get the location of the pan in the pannableView’s coordinate system
Now we do whatever we want with that information



CS193p

Spring 2016

So, given this information, what would the pan handler look like?
func pan(gesture: UIPanGestureRecognizer) {  
    switch gesture.state {  
        case .Changed: fallthrough  
        case .Ended:  
            let translation = gesture.translationInView(pannableView)  
            // update anything that depends on the pan gesture using translation.x and .y 
            gesture.setTranslation(CGPointZero, inView: pannableView)  
        default: break  
    }  
}

Gestures

Remember that the action was pan(_:) (if no _:, then no gesture argument)
We are only going to do anything when the finger moves or lifts up off the device’s surface
fallthrough is “execute the code for the next case down” (case .Changed,.Ended: ok too)
Here we get the location of the pan in the pannableView’s coordinate system
Now we do whatever we want with that information
By resetting the translation, the next one we get will be incremental movement



CS193p

Spring 2016

Gestures
UIPinchGestureRecognizer
var scale: CGFloat // not read-only (can reset)
var velocity: CGFloat { get } // scale factor per second

UIRotationGestureRecognizer
var rotation: CGFloat // not read-only (can reset); in radians
var velocity: CGFloat { get } // radians per second

UISwipeGestureRecognizer
Set up the direction and number of fingers you want, then look for .Recognized
var direction: UISwipeGestureRecoginzerDirection // which swipes you want
var numberOfTouchesRequired: Int // finger count

UITapGestureRecognizer
Set up the number of taps and fingers you want, then look for .Ended
var numberOfTapsRequired: Int // single tap, double tap, etc.
var numberOfTouchesRequired: Int // finger count



CS193p

Spring 2016

Demo
Gestures Demo

Add a gesture recognizer (pinch) to the FaceView to zoom in and out (control its own scale)
Add a gesture recognizer (pan) to the FaceView to control expression (Model) in the Controller



CS193p

Spring 2016

MVCs working together



CS193p

Spring 2016

Multiple MVCs
Time to build more powerful applications

To do this, we must combine MVCs …

iOS provides some Controllers 
whose View is “other MVCs” *

* you could build your own Controller that does this, 
but we’re not going to cover that in this course



CS193p

Spring 2016

Multiple MVCs
Time to build more powerful applications

To do this, we must combine MVCs …

Examples:
UITabBarController
UISplitViewController
UINavigationController

iOS provides some Controllers 
whose View is “other MVCs”



CS193p

Spring 2016

UITabBarController
It lets the user choose between different MVCs …

A “Dashboard” MVC

The icon, title and even a “badge value” on these
is determined by the MVCs themselves via their property:
var tabBarItem: UITabBarItem!
But usually you just set them in your storyboard.



CS193p

Spring 2016

UITabBarController
It lets the user choose between different MVCs …

A “Health Data” MVC

If there are too many tabs to fit here,
the UITabBarController will automatically
present a UI for the user to manage the overflow!



CS193p

Spring 2016

UITabBarController
It lets the user choose between different MVCs …



CS193p

Spring 2016

UISplitViewController
Puts two MVCs side-by-side …

A
Calculator

MVC

Master



CS193p

Spring 2016

UISplitViewController
Puts two MVCs side-by-side …

A
Calculator

MVC

A
Calculator Graph

MVC

Master Detail



CS193p

Spring 2016

UISplitViewController
Puts two MVCs side-by-side …

A
Calculator

MVC

A
Calculator Graph

MVC

Master Detail



CS193p

Spring 2016

UISplitViewController
Puts two MVCs side-by-side …

A
Calculator

MVC

A
Calculator Graph

MVC

Master Detail



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …

An “All Settings” MVC

This top area is drawn by the 
UINavigationController

But the contents of the top 
area (like the title or any 
buttons on the right) are 
determined by the MVC 
currently showing (in this case, 
the “All Settings” MVC)

Each MVC communicates these 
contents via its 
UIViewController’s 
navigationItem property



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …

A “General Settings” MVC

It’s possible to add MVC-
specific buttons here too via 
the UIViewController’s 
toolbarItems property



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …

A “General Settings” MVC

Notice this “back" button has 
appeared.  This is placed here 
automatically by the 
UINavigationController.



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …

An “Accessibility” MVC



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …

A “Larger Text” MVC



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …



CS193p

Spring 2016

UINavigationController
Pushes and pops MVCs off of a stack (like a stack of cards) …



CS193p

Spring 2016

UINavigationController

I want more features, but it doesn’t make 
sense to put them all in one MVC!



CS193p

Spring 2016

UINavigationController

So I create a new MVC to 
encapsulate that functionality.



CS193p

Spring 2016

UINavigationController

We can use a UINavigationController 
to let them share the screen.



CS193p

Spring 2016

UINavigationController

UINavigationController
The UINavigationController is a 

Controller whose View looks like this.



CS193p

Spring 2016

UINavigationController

UINavigationController

rootViewController
But it’s special because we can set its 

rootViewController outlet to another MVC ...



CS193p

Spring 2016

UINavigationController

UINavigationController
... and it will embed that MVC’s 

View inside its own View.



CS193p

Spring 2016

UINavigationController

UINavigationController

Then a UI element in this View (e.g. a UIButton) can segue to the other 
MVC and its View will now appear in the UINavigationController instead.



CS193p

Spring 2016

UINavigationController

UINavigationController

We call this kind of segue a 
“Show (push) segue”.



CS193p

Spring 2016

UINavigationController

UINavigationController

Notice this Back button 
automatically appears.



CS193p

Spring 2016

UINavigationController

UINavigationController

When we click it, we’ll 
go back to the first MVC.



CS193p

Spring 2016

UINavigationController

UINavigationController

Notice that after we back out of an MVC,

it disappears (it is deallocated from the heap, in fact).



CS193p

Spring 2016

UINavigationController

UINavigationController



CS193p

Spring 2016

Accessing the sub-MVCs
You can get the sub-MVCs via the viewControllers property
var viewControllers: [UIViewController]? { get set } // can be optional (e.g. for tab bar)
// for a tab bar, they are in order, left to right, in the array
// for a split view, [0] is the master and [1] is the detail
// for a navigation controller, [0] is the root and the rest are in order on the stack
// even though this is settable, usually setting happens via storyboard, segues, or other
// for example, navigation controller’s push and pop methods

But how do you get ahold of the SVC, TBC or NC itself?
Every UIViewController knows the Split View, Tab Bar or Navigation Controller it is currently in
These are UIViewController properties …
var tabBarController: UITabBarController? { get }
var splitViewController: UISplitViewController? { get }
var navigationController: UINavigationController? { get }
So, for example, to get the detail of the split view controller you are in …
if let detailVC: UIViewController = splitViewController?.viewControllers[1] { … }



CS193p

Spring 2016

Wiring up MVCs
How do we wire all this stuff up?

Let’s say we have a Calculator MVC and a Calculator Graphing MVC
How do we hook them up to be the two sides of a Split View?

(and delete all the extra VCs it brings with it)Just drag out a

Then ctrl-drag from the UISplitViewController to the master and detail MVCs …



CS193p

Spring 2016

Wiring up MVCs



CS193p

Spring 2016

Wiring up MVCs



CS193p

Spring 2016

Wiring up MVCs



CS193p

Spring 2016

Wiring up MVCs



CS193p

Spring 2016

Wiring up MVCs



CS193p

Spring 2016

Wiring up MVCs
But split view can only do its thing properly on iPad

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In

This MVC is selected



CS193p

Spring 2016

Wiring up MVCs
But split view can only do its thing properly on iPad

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In

Now that MVC is part of

the View of this UINavigationController


(it’s the rootViewController)

And the UINavigationController is part of

the View of this UISplitViewController


(it’s the Master, viewControllers[0])



CS193p

Spring 2016

Wiring up MVCs
But split view can only do its thing properly on iPad

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In

You can put this MVC in a UINavigationController too

(to give it a title, for example),


but be careful because the Detail of the UISplitViewController

would now be a UINavigationController


(so you’d have to get the UINavigationController’s rootViewController

if you wanted to talk to the graphing MVC inside)



CS193p

Spring 2016

Wiring up MVCs
But split view can only do its thing properly on iPad

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In


